Going, going, green…

Equinor to disclose Sleipner CCS data. EY finds world decarbonizing fast. Gaffney Cline advocates more carbon management support from government. BP’s Dudley on ‘net zero’. Shell’s van Beurden on ‘misalignment’ with API on carbon. Total joins EU 3D CCS storage project. Wabash Valley Resources kicks off Indiana CCS project. Aker ‘Catch’ contract for Twence. US DoE funds for CCUS. Energy Watch Group study finds 100% decarbonization possible. EU geologists and the energy transition. IEA tracks clean energy progress. IOGP investigates the physical risk of climate change to the oil and gas industry. ISB chair warns of ‘exaggerated expectations’ for sustainability reporting. Sabine Pass leaks ‘threaten safety and success of US LNG’. NETL report on offshore CCS. US NAP report on Negative emissions technologies and reliable sequestration. Shell Canada’s Quest CCS milestone. ‘Tipping point’ for renewables ‘real soon now’. McKinsey sees peak oil by 2025 (maybe). ExxonMobil signs with Global Thermostat. Silicon Kingdom’s passive carbon capture. Graforce ‘feces, the energy source of the future’.

Equinor and its partners will disclose datasets from the Sleipner field; the world’s first offshore CCS plant, in a push to advance CO2 storage innovation and development. All data will be published via the SINTEF-led CO2 Data Share Consortium in September, a partnership supported by the Norwegian CLIMIT research program and the US Department of Energy. A prototype for the data sharing is available online for selected test users. The digital platform for sharing CO2 storage data is planned to be online in September 2019.

A report from EY and IDC has it that decarbonization, digitization and decentralization are accelerating the countdown to a new energy world faster than expected. Better, cheaper (green) technology is ‘speeding up the journey to tipping points by as much as two years’ and most markets have revised policies towards more ambitious clean energy targets.

A recent Gaffney Cline Focus newsletter asks ‘How can governments get carbon management right for oil and gas?’ Governments are struggling to find solutions to develop or sustain their economic competitiveness, whilst also achieving the ambitious GHG emissions reductions goals and commitments of the Paris Agreement. Less than 10% of the 550 individual energy policies and regulations relate to key technologies for carbon management in oil and gas (i.e., venting, flaring and fugitives reduction) and carbon capture, use and storage (CCUS) implementation. More must be done by governments and industry to develop supporting policies and regulations in these areas.

Speaking at a recent Chatham House event BP Group CEO Bob Dudley explained how the world is to ‘get to net zero’ carbon. Recent climate protests brought parts of the capital to a standstill and the BP AGM was interrupted by demonstrators, ‘even as we were passing a very progressive shareholder resolution’. But according to Dudley, BP agrees with more of the demonstrators’ view of the future than is realized. ‘Like our critics, BP believes the world is not on a sustainable path’, particularly as this year, global carbon emissions are rising at their fastest rate in years. BP supports ‘a rapid transition to a lower carbon future’ involving renewables and supported by decarbonized gas, including the use of carbon capture use and storage. In the net-zero world, oil ‘will likely play a smaller role’.

Concomitant with Shell’s publication of reports on industry associations, sustainability and payments to governments, CEO Ben van Beurden voiced Shell’s concern over ‘misalignment with an industry association on climate-related policy’ (read the American Petroleum Institute), adding that ‘in cases of material misalignment, we should also be prepared to walk away’. Shell aims to cut the net carbon footprint of the energy products it sells by around 20% by 2035 and by around half by 2050. More from Shell.

Total is to take part in the ‘EU 3D’ CCS project for the industrial scale capture and storage of CO2. EU 3D is a component of the future Dunkirk North Sea capture and storage cluster. The project is to capture CO2 from an Axens steel plant, using IFPen’s DMX technology, for sequestration in depleted North Sea reservoirs. DMX is funded by the EU Horizon 2020 R&D program with a €19.3 million budget over 4 years.

Phibro unit Wabash Valley Resources (a fertilizer manufacturer) has received an undisclosed amount from OGCI Climate Investments to develop a 1.5-1.75 million tons per annum CCS project near West Terre Haute, Indiana. CO2 will be sequestered 7,000 ft below the surface into Mount Simon saline sandstone. More from WVR.

Aker Solutions has signed a contract with Twence for the supply of carbon capture and liquefaction technology at Twence’s waste-to-energy plant in Hengelo in the Netherlands. Aker Solutions’ ‘Just Catch’ modular carbon capture system has a capacity of 100,000 tons of CO2 per annum and is planned to be in operation by 2021. Once captured and liquefied, the CO2 will be trucked to users such as nearby greenhouses*.

* The amount of CO2 sequestered by growing plants has been put at a few percentage points of that used in a greenhouse.

The US Department of Energy has announced $20 million in federal funding for cooperative agreements that will help accelerate the deployment of carbon capture, utilization, and storage. The selected projects will support the Office of Fossil Energy’s Carbon Storage Program. More from the DoE.

A new study by the Energy Watch Group and Finland’s LUT University describes a 1.5°C scenario with a ‘cost-effective, technology-rich, 100% renewable energy’ system that does not require negative CO2 emission technologies. The study ‘proves that the transition to 100% renewable energy is economically competitive with the current fossil and nuclear-based system and could reduce greenhouse gas emissions in the energy system to zero even before 2050’.

The EU Federation of Geologists has published a position paper on the role of the geologist in the energy transition. EFG believes geothermal energy (both shallow and deep geothermal), CO2 capture and mineral extraction are part of the answer to meet the Paris goals. CO2 capture and storage is considered a much-needed part of the plan and is a short term answer to fight climate change.

Of the 45 energy technologies and sectors assessed in the IEA’s latest Tracking Clean Energy Progress, only 7 are on track for reaching climate, energy access and air pollution targets. The latest findings follow an IEA assessment published in March showing that energy-related CO2 emissions worldwide rose by 1.7% in 2018 to a historic high of 33 billion tonnes. On the positive side, energy storage is now ‘on track’, with a doubling of new installations. Reduction of flaring and methane emissions from oil and gas operations, put at 7% of the energy sector’s greenhouse gas emissions, are still falling well short of targets.

An IOGP-led, three-day gathering chez BP investigated the physical risk to the oil and gas industry of a changing climate. The brainstorming session determined that oil production may be impacted by increases in air and sea temperatures, that personnel ran the risk of increased heat stress. Coastal facilities are at the risk of flooding and extreme waves. Increases in extreme precipitation may impact industry supply chains and operations and there is a risk of drought due to poleward migration of drier areas, increased duration between rainfall events and changes to water policy. More from IOGP.

Speaking at a Cambridge University conference on Climate-related financial reporting, Hans Hoogervorst, chair of the International Accounting Standards Board cautioned against ‘exaggerated expectations’ for sustainability reporting as a catalyst for change, ‘in the absence of policy and political intervention’.

A report in The Economist, ‘The truth about big oil and climate change’ showed that while the annual reports tell a positive green story, investment in fossil fuels continues to grow strongly and dwarfs that going into renewables. Oil companies see the demand for energy surging and have no immediate reason to fear drastic carbon pricing measures in many parts of the world. For investors, these companies remain attractive, with four of the 20 biggest dividend payers being oil majors.

A report in the Houston Chronicle describes major leaks at Cheniere Energy’s Sabine Pass LNG export terminal that ‘threaten the safety and success of America’s top natural gas exporter’. The report tells of ‘gashes up to six feet long that opened up in a massive steel storage tank at Sabine Pass, releasing super-chilled LNG that quickly vaporized into a cloud of flammable gas.’

A 500 plus page report from the US National Academies Press investigates Negative Emissions Technologies (NET) and Reliable Sequestration. The report finds, inter alia, that CCS needs to scale up at 10% year on year to meet a 2° target, and that comparable or greater rates of growth will be required of every available NET. At these rates, scale-up could become limited by materials shortages, regulatory barriers, infrastructure development (i.e., CO2 pipelines and renewable electricity), the availability of trained workers, and many other barriers

The US National Energy Technology Laboratory has published a report, ‘Estimating carbon storage resources in offshore geologic environments’. The report finds that, despite important differences between onshore and offshore systems, carbon can be stored safely and permanently in offshore saline geologic formations. This research proposes using the NETL’s saline storage methodology with an integration of ‘spatial-statistical’ tools to adjust for uncertainties.

Shell Canada’s Quest CCS has reached a major milestone with the captures and storage of 4 million tonnes of CO2 in under four years of operations. Shell Canada president Michael Crothers said, ‘Quest’s costs are coming down. If Quest were to be built today, it would cost about 20-30% less to construct and operate’. Quest received $865 million from the governments of Canada and Alberta to build and operate the facility.

A different Canadian ‘Quest’, the Quality urban energy systems of tomorrow and the Pollution Probe Foundation, have published ‘2019’s energy transformation, evolution or revolution?’, a discussion paper on the risk and opportunities in low-emission energy systems. The cost of wind, solar and batteries has dropped faster than expected (see McKinsey below) and that a ‘tipping point’, where the combination of renewables and storage will be less expensive than traditional energy supplies is nigh, in the next 5 to 10 years. Canada’s diverse energy spans decades-old hydro power, nuclear and legacy coal plants, now a source of intense CO2 emissions. Curiously, the Quest report does not consider the success reported by its Shell-owned namesake. Indeed, CCS is only mentioned in the context of natural gas. It seems like Canada’s oil sands have already been written out of the energy picture!

McKinsey Insights sees oil demand growth slowing substantially with a production peak at 108 bbl/day around 2030, possibly as early as 2025, in an accelerated ‘greening’ scenario. The report warns that a 1.5° or even a 2° scenario is now only a ‘remote possibility’.

ExxonMobil has signed a joint technology development agreement with Global Thermostat to develop its atmospheric carbon capture technology. Global Thermostat’s technology captures and concentrates carbon dioxide emissions from industrial sources, including power plants and the atmosphere. If technical readiness and scalability is established, pilot projects at ExxonMobil facilities could follow.

Arizona State University and Silicon Kingdom holdings have laid claim to the world’s first commercially viable passive carbon capture technology. ‘Powerful’ mechanical trees are to remove CO2 from the air to ‘combat global warming at-scale’. The trees were developed by Prof. Klaus Lackner, director of ASU’s Center for Negative Carbon Emissions and are claimed to be ‘thousands of times more efficient at removing CO2 from the air’ than the natural variety.

Finally, more brown than green but Germany’s Graforce has announced that ‘feces are the energy source of the future. Green hydrogen from excrement could cover half of the world’s annual energy demand and reduce global CO2 emissions by 20%. Graforce’s plasmalysis splits hydrogen out of chemicals like ammonia contained in manure using a high-frequency electrical field, a plasma. The atoms then recombine to green hydrogen and nitrogen, whereby purified water is left behind as a ‘waste’ product. The process is claimed to be 50% cheaper conventional electrolysis. More from Graforce.

Click here to comment on this article

Click here to view this article in context on a desktop

© Oil IT Journal - all rights reserved.